
Universidad de Buenos Aires

Facultad de Ciencias Exactas y Naturales

Departamento de Computación

Finding a Compatible Euler cycle:
a Fast Algorithm

Tesis de Licenciatura en Ciencias de la Computación

Alejandro Candioti
amcandio@gmail.com

Directora: Verónica Becher

Buenos Aires, 1 de diciembre de 2019



UN ALGORITMO RÁPIDO PARA ENCONTRAR UN CAMINO
EULERIANO COMPATIBLE EN UN GRAFO DIRIGIDO

Abstract

Un ciclo Euleriano en un grafo G es un camino cerrado que usa todos los arcos de
G exactamente una vez. Dos ciclos Eulerianos son compatibles si no comparten ningún
camino de longitud 2. Fleischner y Jackson demuestran en 1990 que para todo camino
Euleriano en un grafo dirigido de grado mı́nimo 3, existe otro ciclo Euleriano compatible.
El resultado principal de esta tesis es un algoritmo para calcular un ciclo Euleriano
compatible a uno dado en un grafo dirigido de grado mı́nimo 3, con complejidad de peor
caso O(|E| ∗ log(|V |)) donde |V | y |E| la cantidad de vértices y arcos del grafo. Nuestro
algoritmo se basa en las ideas de Lin, Ward, Jain y Skiena de 2011. Un segundo resultado
de esta tesis responde una pregunta de Becher y Heiber en 2011 y es un algoritmo para
extender una secuencia de Bruijn de orden n a otra de orden n + 1 para alfabetos de 3
o más śımbolos. Nuestra solución de este problema se basa en el algoritmo previamente
descripto que genera un ciclo Euleriano compatible a otro dado. Esta solución también
puede usarse para extender otras secuencias que son variantes de las secuencias de Bruijn,
como los llamados collares perfectos.

Palabras claves: ciclos eulerianos, secuencias de Bruijn, collares perfectos
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FINDING A COMPATIBLE EULER CYCLE:
A FAST ALGORITHM

Abstract

An Euler cycle of a graph G is a closed path that contains all the edges in G. Two
Euler cycles are compatible if they do not share a path of length 2. Fleischner and Jackson
proved in 1990 that for every Euler cycle in a directed graph of minimum degree 3 there
exists another Euler cycle compatible to it. The main result of this Thesis is an algorithm
to calculate an Euler cycle compatible to a given one in a directed graph of minimum
degree 3 with worst case time complexity of O(|E| ∗ log(|V |)), where |V | and |E| are the
amount of vertices and edges of the graph. Our algorithm is based on the ideas of Lin,
Ward, Jain y Skiena in 2011. A second result of this work answers a question proposed
by Becher and Heiber in 2011 and is an algorithm to extend a de Bruijn sequence of order
n to another de Bruijn sequence of order n+ 1 in alphabets with 3 or more symbols. Our
solution for this problem is based on the described algorithm that generates an Euler cycle
compatible to a given one. This solution can also be used to extend another sequences
that are variants of de Bruijn sequences, like the perfect necklaces.

Key words: Euler cycle, de Bruijn sequences, perfect necklaces
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1. INTRODUCTION AND STATEMENT OF RESULTS

We start with the classical definitions. A thorough presentation of this material can be
read from the classical books [9, 12].

A Hamiltonian cycle of a (di)graph G is a closed (directed) path (a walk containing
no repeated edges) that contains all of the vertices in G.

A (di)graph G is eulerian if it contains a closed (directed) path that contains all of
the edges in G. This closed path is known as an Euler cycle. The length of a path is the
number of its edges. Two Euler cycles are compatible if they do not share a path of length
2.

Example 1.1. In the (di)graph from figure 1.1 if we consider the Euler cycles
T1 = [00, 01, 11, 12, 22, 20, 02, 21, 10] and T2 = [01, 12, 20, 00, 02, 22, 21, 11, 10]. These cy-
cles are compatible because there is no pair of consecutive edges present in both cycles.

Fig. 1.1: An eulerian digraph. The edges are named based in the vertices they connect

Definition. An eulerian (di)graph G is 2-eulerian if every Euler cycle of G admits a
compatible Euler cycle.

We say a digraph has minimum degree n if all its vertices have in-degree and out-degree
at least n. Fleischner and Jackson [5] proved that an eulerian digraph G with minimum
degree 3 is 2-eulerian. Lin, Ward, Jain, Skiena [10] give a constructive proof of the same
result.

In this thesis we focus on the problem of quickly find a compatible Euler cycle to a
given one in eulerian digraphs of minimum degree 3. Our algorithm uses the ideas of the
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mentioned proof by Lin, Ward, Jain, Skiena [10]. The following is the main result of this
work:

Theorem 1. Given an Euler cycle a digraph G = (V,E) with minimum degree at least 3,
there is an algorithm that finds a compatible Euler cycle in time O(|E| ∗ log(|V |)).

The algorithm we present in the proof of Theorem 1 provides a solution where the effi-
ciency comes from choosing a data structure that is convenient for the graph manipulation
we do. We believe that this solution can be further improved.

In this thesis we also focus on the problem of how to extend a Hamiltonian cycle to
an Euler one in some class of graphs.

Given a directed graph G, its line graph L(G) is a digraph such that each vertex uv of
L(G) represents an edge (u, v) of G; and there is an edge from x to y in L(G) if and only
if the end vertex of the corresponding edge of x is the start vertex of the corresponding
edge of y, in other words, if x has the form uv and y has the form vw.

A (directed) cycle C ′ extends a (directed) cycle C in a (di)graph G if, under some
rotation, the sequence of edges of C is contiguously contained in the sequence of edges of
C ′. Notice that since the first and last vertex of C are the same, that vertex must appear
at least twice in C ′.

We prove the following result about extending a Hamiltonian cycle:

Theorem 2. Let G be a 2-eulerian digraph with all vertices having the same out-degree
and let H be a Hamiltonian cycle of L(G). There exists an Euler cycle of L(G) that
extends H.

We give an algorithm to generate an Euler cycle E that extends a Hamiltonian cycle
from L(G) where G is a digraph. We adapt the method derived from the proof of the
BEST theorem [13] described by Frederiksen [7] to generate an Euler cycle based on a
spanning in-tree.

With this algorithm we answer an open question of Becher and Heiber [2] on giving an
algorithm to extend a de Bruijn sequence of order n to a de Bruijn sequence of order n+1.
We also obtain an alternative of the proof given in [2] of the existence of one extension.

The results we obtained for de Bruijn sequences can be adapted to extend a variant
of de Bruijn sequences, called perfect necklaces defined by Alvarez, Becher, Ferrari and
Yuhjtman in [1].



2. FINDING A COMPATIBLE EULER CYCLE

The characterization of eulerian directed graphs by I.J. Good [8] states that a directed
graph is eulerian if and only if it is strongly connected and the in-degree and out-degree
of each vertex coincide.

As done by Lin, Ward, Jain and Skiena [10], an Euler cycle in a graph G corresponds to
a pairing of each in-edge to its out-edge for each vertex v ∈ G. Such an edge-pairing defines
a perfect matching between input edges to output edges of v. We call such an edge-pairing
an (edge) wiring of v. Two wirings of a vertex are disjoint if the corresponding matchings
are edge-disjoint. Notice that an Euler cycle defines a specific wiring for each vertex
in G; however, a set of arbitrary wirings for vertices of G usually ends up with several
disconnected (edge) cycles.

Theorem (Lin, Ward, Jain and Skiena [10, Theorem 7]). An eulerian digraph G with
minimum degree at least 3 is 2-eulerian.

Proof. Let C be an arbitrary Euler cycle of G. Then, C defines a specific wiring for each
vertex in G. We can rewire each vertex v in G such that the new wiring is disjoint and
still forms an Euler cycle. Note that the initial wiring of v partitions edges of G into δ
disjoint nonempty paths, namely {P1, P2, ..., Pδ}, with C = (P1P2...Pδ) in circular order.
Let ai and bi denote the first and last edge of Pi respectively. Note that the vertex v wires
bi to a1+(i mod δ). It is easily verified that the newly constructed wiring of v by inverting
the order of the paths in the Euler cycle produces a disjoint Euler cycle (PδPδ−1...P2P1)
with respect the paths centered on v. This is because in the new cycle, the vertex v wires
bi to a(i−2 mod δ)+1. Note that the argument fails for δ = 2 where (P1P2) = (P2P1).

This rewire operation generates a new Euler cycle by modifying just the paths of
length 2 centered on vertex v, the paths of length 2 center in vertices distinct to v remain
unchanged. Therefore, applying the same operation for every vertex generates a new Euler
cycle compatible with the original one.

Figure 2.1 shows this diagrammatically for an example for δ = 3.

Fig. 2.1: An example of rewiring a vertex with δ = 3 [10]
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2.1. Array and List implementations 5

This proof clearly defines an algorithm to find a compatible Euler cycle to a given one
(in a graph with minimum degree at least 3). At the i-th iteration a new Euler cycle Ei is
generated by rewiring vertex vi. All the paths of length 2 that have vi+1 as middle vertex
that are present in Ei+1 are not present in Ei. The other paths of length 2 are shared by
Ei and Ei+1. Therefore, the last Euler cycle is compatible to the first one because the new
paths of length 2 that are created in a given iteration, remain unchanged until the end.

Notice that to rewire a vertex v we must know the entering and exiting order of edges
of v. After a rewire operation of a vertex, the entering and exiting order of other vertices
might be altered, so that order must be recalculated after every operation to rewire that
vertices. For that reason, the O(|E|) approach of calculating the entering and exiting
order once and then rewiring every vertex does not work.

We can also think of the rewire operation of a vertex as three sub-operations on paths:
split, reverse and join. At the rewire operation of a vertex v, we split the Euler cycle in
multiple paths Pi all starting with v, and the we reverse and join them. This gives us an
algorithm which depends on the implementation of the split, reverse and join operations
on the cycle:

Algorithm 1

1: function FindCompatibleEulerCycle(vertices: [Vertex], cycle: Cycle)
2: for v ∈ vertices do
3: paths = split(cycle, v)
4: reversedPaths = reverse(paths)
5: cycle = join(reversedPaths)
6: end for
7: return cycle
8: end function

From now on, we refer as the set of edges and vertices of the input graph G as E and
V respectively. Naturally, |E| and |V | are the amount of edges and vertices of G. We
refer as dv as the out-degree of vertex v, since the input graph G is eulerian, dv it is also
the in-degree of vertex v. We measure the complexity of the algorithm by considering the
worst case of the amount of performed mathematical operations. As usual, we use the
asymptotic big O notation and we say that the algorithm has time complexity O(g(x)) to
express that there is a positive constant C such that for every x the number of performed
operations is at most C|g(x)|.

2.1 Array and List implementations

We can think of the Euler cycle as a sequence of vertices (one vertex can appear multiple
times) and implement it using a circular array or a circular linked list. Since we have one
vertex occurrence for every edge of G, we store |E| elements on this structure.

If we use a circular array, the complexity of finding and splitting the array is O(|E|),
as is the complexity of reversing and joining the split sub-arrays. Since we need to
perform that operations to rewire each vertex, the time complexity of this implementation
is O(|E| ∗ |V |).



6 2. Finding a compatible Euler cycle

Notice that after the split of the rewire of vertex v we can have an extra sub-array (the
first one) without starting with the vertex v. Since the original array represents a loop,
this “orphan” sub-array must be joined with the last sub-array before reordering them.

Fig. 2.2: A rewire operation on vertex 2 in the Euler cycle T1 from Example 1.1

If we use a circular linked list to represent the cycle, the split operation of a vertex v
can be made faster by keeping an array of pointers to each occurrence of v in the cycle. By
doing this, the split operation is O(dv). Unfortunately, the current order of the occurrences
of v is uncertain, because it could had been affected by previous rewire operations. To find
this order of occurrences we need to traverse the cycle and therefore O(|E|) operations
are needed to perform a rewire operation on a vertex. This yields a O(|E| ∗ |V |) time
complexity for the algorithm.

We can provide a faster implementation by using ordered sets implemented as binary
search trees. These ordered sets can help us to address the problem of calculating the
order of occurrences of vertices.

2.2 Binary Search Tree implementation

As in the array implementation, we represent the cycle as a sequence of vertex occurrences.
We refer as a vertex occurrence position as the index of the occurrence in the sequence.
When we say “relative order” we refer to the order between the vertices in the sequence.

In this implementation we can represent the sequence of vertices with a Binary Search
Tree where the position in the sequence is the search key of the Binary Search Tree. Every
node of the Binary Search Tree corresponds to an occurrence of a vertex in the cycle, since
a vertex can appear multiple times in the sequence, it can have multiple corresponding
nodes in the Binary Search Tree. To recover the Euler cycle as a sequence of vertices, we
must traverse the nodes of the tree in-order.

Now, the join and split operations on the cycle correspond to join and split operations
on the Binary Search Tree. The join operation of two Binary Search Trees t1 and t2,
returns a Binary Search Tree containing all the elements in t1 and t2. It requires that all
the elements of t1 are smaller than all the elements in t2. The split operation of a Binary
Search Tree by a node returns two Binary Search Trees t1 and t2. Those elements smaller
than the node value will be on t1 and the rest will be on t2.
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In this representation, to rewire a vertex v we must find its different occurrences on the
cycle (in the tree), split the tree in dv +1 sub-trees, reorder and join them. Unfortunately,
when reordering and joining the sub-trees the order key is violated, because the position
of vertices in the cycle changes after each rewire operation. We cannot update the search
key of every node before merging the trees because it is expensive.

However, since we only care for the relative order of every vertex occurrence we can
use the position in the cycle as an implicit key. Instead of explicitly having the occurrence
position or index, we implicitly determine the position or index by the order of the nodes
in the Binary Tree, for example, the first vertex corresponds to the left most leaf of the
tree, and the last one corresponds to the right most leaf. In Figure 2.3 we show an example
of a BST representation for the cycle T1 from Example 1.1.

Fig. 2.3: A BST tree with implicit key representation of Euler cycle T1 from Example 1.1

2.2.1 Finding the relative order

We need to tackle the sub-problem of finding the order of occurrences of a given vertex
v in the cycle. In the tree representation of the cycle, the search key of the tree is the
relative order but we need to search by vertex value (i.e. find all the occurrences of a vertex
v). To avoid traversing all the structure as in the array implementation, we can use the
previously mentioned idea of keeping an array of pointers to the BST nodes (occurrences)
for every vertex. Now, we can calculate the relative order of the occurrences of a vertex
v using two steps. First, a climbing step to calculate all the paths from the nodes to the
root, and then, a DFS step to visit all the nodes in relative order (left first DFS).
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Fig. 2.4: Flagged nodes to perform the DFS step over occurrences of vertex 2 from Example 1.1

The climb step is described in Algorithm 2 and its time complexity is O(dv ∗ log(|E|))
(we use a balanced tree), because for every occurrence node of v, we climb at least log(E)
times. In this step we must flag all the visited nodes to limit the search space of the DFS
step, if we do not do that, the search space will be O(|E|) in the worst case and that
will ruin the overall time complexity of the algorithm. We also have to flag the returning
nodes to easily check in the next step if a node must be included in the result.

Algorithm 2

1: function ClimbStep(vertexNodes: [CycleNode], cycle: CycleTree)
2: for n ∈ vertexNodes do
3: n.return = true
4: while n 6= NILL and ¬n.visited do
5: n.visited = true
6: n = n.parent
7: end while
8: end for
9: return DfsSort(cycle)

10: end function

The DFS traversal must clean all the flags written by the climb routine so we can
perform other Climb and DFS operations later. As we want to sort the nodes in increasing
order, we must visit the left child first. In a stack implementation, this translates into
pushing the right child first. This implementation is described in Algorithm 3 and its
running time is O(dv ∗ log(|E|)), because that is the complexity of the search space for the
DFS algorithm.
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Algorithm 3

1: function DfsSort(cycle : CycleTree)
2: ret = emptyList
3: stack = [cycle.root]
4: while ¬stack.empty do
5: current = stack.pop()
6: if current 6= NIL then
7: current.visited = false
8: if current.return then
9: ret.append(current)

10: current.return = false
11: end if
12: stack.push(current.right)
13: stack.push(current.left)
14: end if
15: end while
16: return ret
17: end function

2.2.2 Splitting and joining operations

Once we have the relative order of the nodes, we can proceed to split the tree in sub-trees.
Since we do not have an explicit key to split the trees, we once again need to use the
pointers to each vertex nodes. Fortunately, those pointers were found by the previous
section were we got the pointers sorted by their relative order. For simplicity, we split the
tree by the relative order of the nodes, we start splitting the tree by the first node and so on.
The time complexity of splitting a tree depends on the type of Binary Tree we choose. It is
known that Red-Back trees and AVL trees support the splitting operation in logarithmic
time. They also support the join operation of two trees t1 y t2 in O(h(t1)− h(t2)) where
h is the height of a tree [3]. Since we always join trees of at most size E, every merging
operation done by the algorithm takes O(log(|E|)).

2.2.3 Proof of Theorem 1

For the ease of reading, we repeat here the statement of Theorem 1.

Theorem 1. Given an Euler cycle of a digraph G = (V,E) with minimum degree at least
3, there is an algorithm that finds a compatible Euler cycle in time O(|E| ∗ log(|V |)).

Proof. Consider the implementation of the Euler cycle as the previously described binary
search tree with implicit key and an array of pointers for each vertex to its occurrences
nodes. To perform a rewire operation on a vertex v, we must determine the order of the
occurrences of v (O(dv ∗ log(|E|)))), split the tree dv times (O(dv ∗ log(|E|)))), join the
first tree with the last one (O(log(|E|))), then reversing the order of the trees (O(dv)))
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and finally merging them (O(dv ∗ log(|E|))). So the cost to rewire all the n vertices is

O(
∑
v∈V

dv ∗ log(|E|)) = O(|E| ∗ log(|E|))

If we add the time of constructing the tree and the vertex pointers (O(|E|)) and the time
of traversing the tree to output the cycle (O(|E|)), we get a total time complexity of
O(|E| ∗ log(|E|))) which is equivalent to O(|E| ∗ log(|V |)) because |E| is at most |V |2.

2.3 Some improvements

After we perform a rewire operation on a vertex v, all the left neighbors occurrences
of vertex v remain fixed through the next iterations. For that reason, we can blend each
occurrence node of v to its respective left neighbor. For example, if we have already rewired
vertex v and one of the occurrences of w is the left neighbor of one of the occurrences
of vertex v, we can merge their respective nodes into a single node representing the two
occurrences of v and w consecutively. This reduces the size of the structure where we store
the current cycle, and it could reduce time complexity in the array implementation when
the vertex degrees are unbalanced (if we rewire the one with highest degree first).

Also, we do not take advantage of the fact we can choose the order of rewires: it is
cheaper to split a Binary Tree for the nodes nearest to the root. We can use a Treap data
structure for this [11]. In this data structure every node has a search key and a priority, so
the tree is a Binary Search Tree for the keys and a Heap for the priorities. In this problem,
we can make same vertex occurrences have the same priority, so top priority occurrences
will be on the top part of the tree. Combining this idea with previously mentioned idea
of merging fixed, we can split and drop top priority vertices at each rewire operation in
O(dv) time. Unfortunately, join time complexity is still O(log(|E|) ∗ dv), so the overall
running time does not improve.



3. EXTENDING HAMILTONIAN CYCLES TO EULER CYCLES

We start with some properties of line graphs.

Proposition 3. An Euler cycle of a digraph G corresponds to a Hamiltonian cycle of
L(G).

Corollary 4. Let G be a 2-eulerian (di)graph, for every Hamiltonian cycle H in L(G),
there exists another Hamiltonian cycle without a common edge.

Proof. Let E be an Euler cycle of G. For every pair of consecutive edges of E we have
a pair of adjacent vertices in L(G). Therefore E corresponds to a Hamiltonian cycle in
L(G).

Proposition 5. If a digraph G is strongly connected, L(G) is strongly connected.

Proof. Let uv and wz be vertices from L(G) corresponding to edges (u, v) and (w, z) in
G. Since G is strongly connected, there is a path from v to w. Therefore there is a path
that goes from a vertex of the form vx to a vertex of the form yw. Since uv has an edge
to vx and yw has an edge to wz, there is a path from uv to wz.

Proposition 6. If G is an eulerian digraph with all vertices having same out-degree, then
L(G) is eulerian.

Proof. Since G is strongly connected, so is L(G). Let uv be a vertex from L(G) corre-
sponding to an edge (u, v) in G. The in-degree of uv corresponds to the in-degree of u
and the out-degree of uv corresponds to the out-degree of v. Since G is eulerian and all
out-degrees are the same, the in-degree of uv is the same as its out-degree.

3.1 Proof of Theorem 2

For ease of reading we write again the statement of Theorem 2.

Theorem 2. Let G be a 2-eulerian digraph with all vertices having the same out-degree
and let H be a Hamiltonian cycle of L(G). There exists an Euler cycle of L(G) that
extends H.

Proof. By proposition 6, L(G) is eulerian. By corollary 4, there exists a Hamiltonian cycle
H ′ having no edge in common with H. Let LG′ = L(G)−H be the result of removing all
the edges of H from L(G). LG′ contains a Hamiltonian cycle so it is strongly connected
and every vertex of LG′ has same in-degree to out-degree, therefore LG′ is eulerian. Let
E′ be an Euler cycle of LG′ and let E = H +E′ be the concatenation of the sequences of
edges of H and E′. Then, E is an Euler cycle and extends H.

Note that since H is a closed path, the first vertex of H visited in the Euler cycle
extension E is the same as the last one.

11



12 3. Extending Hamiltonian cycles to Euler cycles

3.2 An algorithm to extend a Hamiltonian cycle to an Euler cycle

It follows from the proof of the BEST theorem [13] that to generate an Euler cycle in a
digraph we can use one of its spanning in-trees T .

Definition. An in-tree is a directed tree with a vertex designated as root, in which other
vertex than the root has out-degree exactly one.

Definition. A directed spanning-tree of a graph G is a directed tree that is a sub-graph of
G and has all its vertices present in G.

The algorithm traverses the digraph starting at the root of T and visits the vertices
in a way that, when exiting a vertex, the edge belonging to T is not used until all other
outgoing edges have been traversed. This algorithm runs in O(|E|) time.

Knowing that there exists an Hamiltonian cycle of H ′ without a common edge with
H, we can drop an edge from H ′ to form T and use it as an spanning in-tree of L(G).
This gives us an extending algorithm:

In the first |V | iterations we start at the root of T and enter and exit the vertices using
the edges in H. In the following iterations we keep using the other edges following the
rules of the previously defined method. Since none of the edges of T have been visited, we
can ensure an Euler cycle is going to be generated. The complexity of this algorithm is
O(|E|) plus the time of complexity of finding H ′. Considering that H ′ is an Euler cycle in
G = (V,E) compatible with the Euler cycle H, Theorem 1 ensures that H ′ can be found
in O(|E| ∗ log(|V |)) operations. Thus, the algorithm that extends H into E takes at most
O(|E| ∗ log(|V |)) operations.

3.3 Applications

In this section we include some applications of Theorem 2 on extending some sequences
that have a correspondence with Euler cycles in graphs.

3.3.1 Extending de Bruijn sequences

A (non-cyclic) de Bruijn sequence of order n in a k symbol alphabet is a sequence of
length kn+n−1 such that every sequence of length n occurs exactly once as a consecutive
substring [4, 6].

A de Bruijn graph of order n, which we denote by Gn, is a graph whose vertices are
all sequences of length n, and the edges link overlapping sequences w, v such that the last
n − 1 characters of w are equal to the first n − 1 characters of v. The edges of Gn can
be labeled with sequences of length n + 1, such that the edge (w, v) is labeled with the
concatenation of w and the last character of v. Then, each possible sequence of length
n+ 1 in k symbols appears in exactly one edge of Gn. Moreover, the line graph of Gn is
exactly Gn+1. We can use the results for 2-eulerian graphs to give an alternative proof to
the following theorem in [2].

Theorem (Becher and Heiber [2]). Every de Bruijn sequence of order n in at least three
symbols can be extended to a de Bruijn sequence of order n+ 1.
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Proof. De Bruijn sequences of order n correspond exactly to the Hamiltonian cycles in de
Bruijn graphs Gn. In turn, the Hamiltonian cycles in Gn+1 are exactly the eulerian cycles
in Gn. Every vertex of Gn−1 has in-degree and out-degree at least three because the size
of the alphabet and therefore Gn−1 is 2-eulerian. Since Gn is the line graph of Gn−1, the
conclusion follows from Theorem 2.

Theorem 2 also provides a method to extend a de Bruijn sequence of order n to a de
Bruijn sequence of order n+ 1. Since Gn has bn vertices and bn+1 edges, this method has
O(n ∗ bn + bn+1) time complexity. This alternative proof is interesting because its uses
Theorem 2 in a way that can be applied to other de Bruijn variants.

3.3.2 Extending perfect necklaces

Perfect necklaces are a de Bruijn sequence variant defined by Alvarez, Becher, Ferrari and
Yuhjtman in [1]: we call a necklace (k, n)-perfect for positive integers k and n, if each
word of length k occurs exactly n times at positions which are different modulo n for any
convention on the starting point.

Let A be an alphabet with cardinality b, let s be a word length and let n be a positive
integer. The astute graph Gs,n is the directed graph, with nbs vertices where each vertex
is a pair (u, v), where u is in As and v is a number between 0 and n− 1. There is an edge
from (u, v) to (u′, v′) if the last s− 1 symbols from u coincide with the first s− 1 symbols
from u′ and (v + 1) mod n = v′. Observe that Gs,n is strongly regular (all vertices have
in-degree and out-degree equal to b) and it is strongly connected (there is a path from
every vertex to every other vertex).

Fact. Gs,n is the line graph of Gs−1,n.

Proof. Every edge of Gs,n from (u, v) to (u′, v′) is determined by the word u, the number
v and the last character of u′. Therefore, it can be mapped 1-to-1 to a vertex of Gs+1,n.
Two edges of Gs,n are connected in L(Gs,n) if they have the form (x, y) and (y, w) where
x, y, w are vertices from Gs,n, so every edge of L(Gs,n) is determined by the vertices (x, y)
and the last character of the vertex w. Therefore every edge of L(Gs,n) corresponds to an
edge of Gs+1,n with matching corresponding start and end vertices.

Fact. Every (k, n)-perfect necklace of an alphabet of at least 3 letters can be extended to
a (k, n+ 1)-perfect necklace.

Proof. As we do with de Bruijn sequences, a (k, n)-perfect necklace corresponds to an
Euler cycle in the astute graph Gk−1,n which is 2-eulerian because it is strongly regular
with degree at least 3. Also, Gk−1,n is the line graph of Gk,n. The conclusion follows from
Theorem 2.



4. CONCLUSIONS AND FUTURE WORK

In this work we proposed a O(|E| ∗ log(|V |)) algorithm to find compatible Euler cycles
but we strongly believe there is an optimal (O(|E|)) solution. As we mentioned before,
our proposed algorithm does not leverage the fact we can choose in which order vertices
are rewired. Also, our algorithm is a more a data structure based solution than a graph
one, maybe with a graph theory approach we can get an optimal solution. It would be
great to easily understand how the order of entering and exiting edges are affected when
we rewire a vertex.

Moreover, the rewiring algorithm only works for eulerian graphs with minimum degree
at least 3. It would be interesting to modify the algorithm so it works for arbitrary
2-eulerian graphs. For that, it would be helpful to have a characterization of such graphs.
Regarding that family of graphs, it would also be interesting to extend the analysis to n-
eulerian graphs to understand their properties. We leave these questions as open problems
for future work.
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